%0 Journal Article %T Self-Organized Criticality of Rainfall in Central China %A Zhiliang Wang %A Chunyan Huang %J Advances in Meteorology %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/203682 %X Rainfall is a complexity dynamics process. In this paper, our objective is to find the evidence of self-organized criticality (SOC) for rain datasets in China by employing the theory and method of SOC. For this reason, we analyzed the long-term rain records of five meteorological stations in Henan, a central province of China. Three concepts, that is, rain duration, drought duration, accumulated rain amount, are proposed to characterize these rain events processes. We investigate their dynamics property by using scale invariant and found that the long-term rain processes in central China indeed exhibit the feature of self-organized criticality. The proposed theory and method may be suitable to analyze other datasets from different climate zones in China. 1. Introduction China is not only a big country for its population but also a big agriculture one. Rain is the main source of irrigation water, and it plays a key role in the crop growing period. No rain will cause drought while storm may cause flood. To keep sufficient agriculture production sustainable, it is necessary to identify the role of the rain clearly and to understand the characteristics of the rain deeply. In particular, analyzing the rain in central China is more important because this region is the main crop source and the population density is very high. Rainis liquidprecipitation, as opposed to nonliquid kinds of precipitation such assnow andhail and so on. Rainfall is the result of the atmosphere movement, which is influenced by sun radiation, sea water evaporation, and earth rotation. In the fact, the long-term rain record is a time series which can be regarded as a random process. The rainfall process is actually a complexity system because there are too many influencing factors. In previous studies, many mathematical methods have been applied to find the rainfall pattern, such as periodic, trend, change point, and fractal. Based on the last 1033 years historic data set, Jiang analyzed the temporal and spatial climate variability by using a ˇ°Mexican hatˇ± wavelet transform [1]. Bordi used Standardized Precipitation Index (SPI) to assess the climatic condition of this region and applied principal component to capture the pattern of co-variability of the index at different gauge stations [2]. The results suggest that the northern part of east-central China is experiencing dry conditions more frequently from the 1970s onwards indicated by a negative trend in the SPI time series. Applying the binary cubic interpolation and optimal fitting method, Wang et al. set up a statistical model [3] %U http://www.hindawi.com/journals/amete/2012/203682/