%0 Journal Article %T Plant Phenotypic Plasticity in Response to Environmental Factors %A Loretta Gratani %J Advances in Botany %D 2014 %R 10.1155/2014/208747 %X Plants are exposed to heterogeneity in the environment where new stress factors (i.e., climate change, land use change, and invasiveness) are introduced, and where inter- and intraspecies differences may reflect resource limitation and/or environmental stress factors. Phenotypic plasticity is considered one of the major means by which plants can cope with environmental factor variability. Nevertheless, the extent to which phenotypic plasticity may facilitate survival under environmental condition changes still remains largely unknown because results are sometimes controversial. Thus, it is important to identify plant functional traits in which plasticity may play a determinant role in plant response to global change as well as on the ecological consequences at an ecosystem level for the competition between wild and invasive species, considering that species with a greater adaptive plasticity may be more likely to survive in novel environmental conditions. In the near future, it will be important to increase long-term studies on natural populations in order to understand plant response to environmental factor fluctuations including climate change. There is the necessity to analyze variations at phenotypic and genetic levels for the same species and, in particular, for endemic and rare species because these could have drastic effects at an ecosystem level. 1. Introduction Literature on phenotypic plasticity has increased expanding from the initial focus on abiotic factors to that of biotic ones [1¨C3] and, in recent years, taking into consideration plant response to global climate change, land use change and plant invasiveness [4, 5] (Table 1). Thus, fundamental questions for evolutionary ecologists in a global change context are how plant species will respond to these new scenarios and what mechanisms will be involved in the process [6, 7]. The understanding of phenotypic plasticity will be crucial for predicting changes in species distribution, community composition, and crop productivity under global change conditions [8, 9]. Nevertheless, the theme of phenotypic plasticity is complex and researchers do not always arrive at the same conclusions and results are sometimes controversial. Table 1: List of the mentioned species and corresponding references. Phenotypic plasticity has been defined as a change in the phenotype expressed by a single genotype in different environments. Bradshaw [10] recognized that phenotypic plasticity could itself be under genetic control and therefore subjected to selective pressure. Scheiner and Goodnight [11] show that there %U http://www.hindawi.com/journals/abot/2014/208747/