%0 Journal Article %T Signature of Plausible Accreting Supermassive Black Holes in Mrk 261/262 and Mrk 266 %A Gagik Ter-Kazarian %A Lusine Sargsyan %J Advances in Astronomy %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/710906 %X We address the neutrino radiation of plausible accreting supermassive black holes closely linking to the 5 nuclear components of galaxy samples of Mrk 261/262 and Mrk 266. We predict a time delay before neutrino emission of the same scale as the age of the Universe. The ultrahigh energy neutrinos are produced in superdense protomatter medium via simple (quark or pionic reactions) or modified URCA processes (G. Gamow was inspired to name the process URCA after the name of a casino in Rio de Janeiro). The resulting neutrino fluxes for quark reactions are ranging from to , where is the opening parameter. For pionic and modified URCA reactions, the fluxes are and , respectively. These fluxes are highly beamed along the plane of accretion disk, peaked at ultrahigh energies, and collimated in smaller opening angle . 1. Introduction The interactions between galaxies may promote key processes in galaxy evolution including mass assembly, star formation, morphological transformation, and activity of AGNs. Among various proposals is the hierarchical galaxy formation hypothesis, wherein the galaxies and galactic structures are formed through merging of smaller galaxies/structures. The galaxy-galaxy interactions/mergers, as well known, can significantly enhance the star formation rate in the respective galaxies; see, for example, [1] for a review. Each proposal towards galaxy-galaxy interactions/mergers has its own advantage and limitations in proving the whole view of the issue. If tidal plume and tails indicative of classical merger remnants can be seen, it seems reasonable to accept the merging hypothesis, as in the case of many Markarian galaxies with a binary nucleus. However, some Markarian galaxies with multiple nuclei do not show any sign of tidal effects. If obvious tidal features are not easily detectable, it is wise to place constraints on the likelihood of the merger hypothesis as it was done in the pioneering discussions of Ambartsumian in the 1950¡¯s and 1960¡¯s for analyzing the observational data of eruptive activity of galactic nuclei and energetic nonstationary phenomena in the Universe [2¨C4]. Recently, we present a spectroscopic investigation [5] of the galaxy samples of Mrk 261/262 and Mrk 266. The nuclear components in both of these samples show quite similar emission lines in their spectra. Besides, they do not show any sign of tidal effects. Therefore, one cannot exclude the alternative possibility that galactic nuclei in these samples, for example, may separate by fission rather than merging. A useful framework for such viewpoint is the %U http://www.hindawi.com/journals/aa/2013/710906/