%0 Journal Article %T Fuzzified Data Based Neural Network Modeling for Health Assessment of Multistorey Shear Buildings %A Deepti Moyi Sahoo %A S. Chakraverty %J Advances in Artificial Neural Systems %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/962734 %X The present study intends to propose identification methodologies for multistorey shear buildings using the powerful technique of Artificial Neural Network (ANN) models which can handle fuzzified data. Identification with crisp data is known, and also neural network method has already been used by various researchers for this case. Here, the input and output data may be in fuzzified form. This is because in general we may not get the corresponding input and output values exactly (in crisp form), but we have only the uncertain information of the data. This uncertain data is assumed in terms of fuzzy number, and the corresponding problem of system identification is investigated. 1. Introduction System identification methods in structural dynamics, in general, solve inverse vibration problems to identify properties of a structure from measured data. The rapid progress in the field of computer science and computational mathematics during recent decades has led to an increasing use of process computers and models to analyze, supervise, and control technical processes. The use of computers and efficient mathematical tools allows identification of the process dynamics by evaluating the input and output signals of the system. The result of such a process identification is usually a mathematical model by which the dynamic behaviour can be estimated or predicted. The system identification problem has been nicely explained in a recent paper [1]. The same statements from [1] are reproduced below for the benefit of the readers. The study of structures dynamic behaviour may be categorized into two distinct activities: analytical and/or numerical modelling (e.g., finite element models) and vibration tests (e.g., experimental modal models). Due to different limitations and assumptions, each approach has its advantages and shortcomings. Therefore, in order to determine the dynamic properties of the structure, reconciliation processes including model correlation and/or model updating should be performed. Model updating can be defined as the adjustment of an existing analytical/numerical model in the light of measured vibration test. After adjustment, the updated model is expected to represent the dynamic behaviour of the structure more accurately as proposed by Friswell et al. [2]. With the recent advances in computing technology for data acquisition, signal processing, and analysis, the parameters of structural models may be updated from the measured responses under excitation of the structure. This procedure is achieved using system identification techniques as an %U http://www.hindawi.com/journals/aans/2013/962734/