%0 Journal Article %T Predicting Asthma Outcome Using Partial Least Square Regression and Artificial Neural Networks %A E. Chatzimichail %A E. Paraskakis %A A. Rigas %J Advances in Artificial Intelligence %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/435321 %X The long-term solution to the asthma epidemic is believed to be prevention and not treatment of the established disease. Most cases of asthma begin during the first years of life; thus the early determination of which young children will have asthma later in their life counts as an important priority. Artificial neural networks (ANN) have been already utilized in medicine in order to improve the performance of the clinical decision-making tools. In this study, a new computational intelligence technique for the prediction of persistent asthma in children is presented. By employing partial least square regression, 9 out of 48 prognostic factors correlated to the persistent asthma have been chosen. Multilayer perceptron and probabilistic neural networks topologies have been investigated in order to obtain the best prediction accuracy. Based on the results, it is shown that the proposed system is able to predict the asthma outcome with a success of 96.77%. The ANN, with which these high rates of reliability were obtained, will help the doctors to identify which of the young patients are at a high risk of asthma disease progression. Moreover, this may lead to better treatment opportunities and hopefully better disease outcomes in adulthood. 1. Introduction Artificial neural networks (ANNs) are one of the main constituents of the artificial intelligence (AI) techniques. Besides the different applications in many other areas, neural networks are also used in health and medicine areas, such as biomedical signal processing, diagnosis of diseases, and medical decision [1, 2]. ANNs have an excellent capability of learning the relationship between the input-output mapping from a given dataset without any prior knowledge or assumptions about the statistical distribution of the data [3]. This capability of learning from a certain dataset without any a priori knowledge makes the neural networks suitable for classification and prediction tasks in practical situations. Furthermore, neural networks are inherently nonlinear which makes them more practicable for accurate modeling of complex data patterns, in contrast to many traditional methods based on linear techniques. Due to their performance, they can be applied in a wide range of medical fields such as cardiology, gastroenterology, pulmonology, oncology, neurology, and pediatrics [1]. Several studies have proposed ANN models for the prediction of various diseases. The authors of [4] developed an ANN to determine whether patients had breast cancer or not. If they had, its type could be determined by using ANN and %U http://www.hindawi.com/journals/aai/2013/435321/