%0 Journal Article %T Selection for Reinforcement-Free Learning Ability as an Organizing Factor in the Evolution of Cognition %A Solvi Arnold %A Reiji Suzuki %A Takaya Arita %J Advances in Artificial Intelligence %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/841646 %X This research explores the relation between environmental structure and neurocognitive structure. We hypothesize that selection pressure on abilities for efficient learning (especially in settings with limited or no reward information) translates into selection pressure on correspondence relations between neurocognitive and environmental structure, since such correspondence allows for simple changes in the environment to be handled with simple learning updates in neurocognitive structure. We present a model in which a simple form of reinforcement-free learning is evolved in neural networks using neuromodulation and analyze the effect this selection for learning ability has on the virtual species' neural organization. We find a higher degree of organization than in a control population evolved without learning ability and discuss the relation between the observed neural structure and the environmental structure. We discuss our findings in the context of the environmental complexity thesis, the Baldwin effect, and other interactions between adaptation processes. 1. Introduction This paper explores the relation between the structure of an environment and the structure of cognitions evolved in that environment. Intuitively, one would expect a strong relation between the two. In the past, some have taken this intuition very far. Spencer [1] viewed the evolution of life and mind as a process of internalization of progressively more intricate and abstract features of the environment. He traced the acquisition of such ˇ°correspondenceˇ± between the internal and external from basic life processes (e.g., the shape of an enzyme molecule has a direct and physical relation to the shape of the molecule whose reactions it evolved to catalyze), all the way up to cognitive processes (such as acquisition of complex causal relations between entities removed in space and time). That a certain correspondence should exist between the shapes of enzyme and substrate will be uncontroversial, but how far can this concept of correspondence take us when cognition is concerned? Certainly, when we hand-code an AI to function within a given environment, we can typically recognize much of the environmental organization in the structure of our AIs' cognitions. However, as the history of connectionism demonstrates, fit behaviour does not necessarily involve intelligible neural structure. More often than not, the neural organization of evolved artificial neural networks (ANNs) allows little if any interpretation in terms of environmental structure. If we demand that models of the mind in %U http://www.hindawi.com/journals/aai/2013/841646/