%0 Journal Article %T Differential Evolution: An Inverse Approach for Crack Detection %A Prabir Kumar Jena %A Dhirendra Nath Thatoi %A Dayal R. Parhi %J Advances in Acoustics and Vibration %D 2013 %I Hindawi Publishing Corporation %R 10.1155/2013/321931 %X This paper presents a damage detection technique combining analytical and experimental investigations on a cantilever aluminium alloy beam with a transverse surface crack. Firstly, the first three natural frequencies were determined using analytical methods based on strain energy release rate. Secondly, an experimental method was adopted to validate the theoretical findings. The damage location and severity assessment is the third stage and is formulated as a constrained optimisation problem and solved using the proposed differential evolution (DE) algorithm based on the measured and calculated first three natural frequencies as inputs. Numerical simulation studies indicate that the proposed method is robust and can be used effectively in structural health monitoring (SHM) applications. 1. Introduction A crack is a potential source of catastrophic failure in structures. Extensive investigations by researchers have been done to develop structural integrity monitoring techniques. Vibration measurement and analysis being an effective and convenient way to detect cracks in structures is mostly being used for development of various such techniques. Several nondestructive techniques (NDT) are available for local damage detection [1] using experimental methods like radiography, the magnetic field method, the acoustic method, and so forth. However, for health monitoring of critical and complex structures, in such experimental methods which require prior knowledge of the damage vicinity, accurate predictions may not be suitable. This has led to the development of quantitative global damage detection methods which are based on modal analysis [2, 3]. Researchers [4] also argue that in view of prohibitive costs and efforts involved in predicting damage to a high level accuracy a better idea is to roughly locate damage in the structure and then use standard NDT methods for closer analysis of the damaged area. Recently a lot of work has been done using modal analysis to detect, locate, and predict crack severity to a greater accuracy level. Dimarogonas [2] in 1996 provided a comprehensive review of vibration based mode shape analysis followed by some recent reviews [4¨C7]. The damage detection problem can be defined as a nonlinear inverse problem [3]. In conventional model-based detection methods, the minimization of an objective function is defined in terms of the differences between the vibration data obtained by modal testing and those computed from the analytical model. These conventional optimization methods are gradient based and usually lead to a local minimum %U http://www.hindawi.com/journals/aav/2013/321931/