%0 Journal Article %T The Program of Gene Transcription for a Single Differentiating Cell Type during Sporulation in Bacillus subtilis %A Patrick Eichenberger %A Masaya Fujita %A Shane T Jensen %A Erin M Conlon %A David Z Rudner %A Stephanie T Wang %A Caitlin Ferguson %A Koki Haga %A Tsutomu Sato %A Jun S Liu %A Richard Losick %J PLOS Biology %D 2004 %I Public Library of Science (PLoS) %R 10.1371/journal.pbio.0020328 %X Asymmetric division during sporulation by Bacillus subtilis generates a mother cell that undergoes a 5-h program of differentiation. The program is governed by a hierarchical cascade consisting of the transcription factors: 考E, 考K, GerE, GerR, and SpoIIID. The program consists of the activation and repression of 383 genes. The 考E factor turns on 262 genes, including those for GerR and SpoIIID. These DNA-binding proteins downregulate almost half of the genes in the 考E regulon. In addition, SpoIIID turns on ten genes, including genes involved in the appearance of 考K. Next, 考K activates 75 additional genes, including that for GerE. This DNA-binding protein, in turn, represses half of the genes that had been activated by 考K while switching on a final set of 36 genes. Evidence is presented that repression and activation contribute to proper morphogenesis. The program of gene expression is driven forward by its hierarchical organization and by the repressive effects of the DNA-binding proteins. The logic of the program is that of a linked series of feed-forward loops, which generate successive pulses of gene transcription. Similar regulatory circuits could be a common feature of other systems of cellular differentiation. %U http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pbio.0020328