%0 Journal Article %T The Planar Ramsey Numbers PR (K<sub>4</sub>-e, K<sub>l</sub>) %A Yongqi Sun %A Yali Wu %A Rui Zhang %A Yuansheng Yang %J American Journal of Computational Mathematics %P 52-55 %@ 2161-1211 %D 2013 %I Scientific Research Publishing %R 10.4236/ajcm.2013.33B009 %X

The planar Ramsey number PR (H1, H2) is the smallest integer n such that any planar graph on n vertices contains a copy of H1 or its complement contains a copy of H2. It is known that the Ramsey number R(K4 -e, K6) = 21, and the planar Ramsey numbers PR(K4 - e, Kl) for l ¡Ü 5 are known. In this paper, we give the lower bounds on PR (K4 ? e, Kl) and determine the exact value of PR (K4 - e, K6).

%K Planar Graph %K Ramsey Number %K Forbidden Subgraph %U http://www.scirp.org/journal/PaperInformation.aspx?PaperID=38531