%0 Journal Article %T Infinitely many solutions to superlinear second order m-point boundary value problems %A Ma Ruyun %A Gao Chenghua %A Chen Xiaoqiang %J Boundary Value Problems %D 2011 %I Springer %X We consider the boundary value problem u ¡å ( x ) + g ( u ( x ) ) + p ( x , u ( x ) , u ¡ä ( x ) ) = 0 , x ¡Ê ( 0 , 1 ) , u ( 0 ) = 0 , u ( 1 ) = ¡Æ i = 1 m - 2 ¦Á i u ( ¦Ç i ) , where: (1) m ¡Ý 3, ¦Çi ¡Ê (0, 1) and ¦Ái > 0 with A : = ¡Æ i = 1 m - 2 ¦Á i < 1 ; (2) g : ¡ú is continuous and satisfies g ( s ) s > 0 , s ¡Ù 0 , and lim s ¡ú ¡Þ g ( s ) s = ¡Þ ; (3) p : [0, 1] ¡Á 2 ¡ú is continuous and satisfies | p ( x , u , v ) | ¡Ü C + ¦Â | u | , x ¡Ê [ 0 , 1 ] ( u , v ) ¡Ê 2 for some C > 0 and ¦Â ¡Ê (0, 1/2). We obtain infinitely many solutions having specified nodal properties by the bifurcation techniques. MSC(2000). 34B15, 58E05, 47J10 %K Nodal solutions %K Second order equations %K Multi-point boundary value problems %K Bifurcation %U http://www.boundaryvalueproblems.com/content/2011/1/14