%0 Journal Article %T Numerical resolution of cone-constrained eigenvalue problems %A A. Pinto da Costa %A Alberto Seeger %J Computational and Applied Mathematics %D 2009 %I %X Given a convex cone K and matrices A and B, one wishes to find a scalar ¦Ë and a nonzero vector x satisfying the complementarity system K x ¡Í(Ax-¦Ë Bx) ¡Ê K+. This problem arises in mechanics and in other areas of applied mathematics. Two numerical techniques for solving such kind of cone-constrained eigenvalue problem are discussed, namely, the Power Iteration Method and the Scaling and Projection Algorithm. %K complementarity condition %K generalized eigenvalue problem %K power iteration method %K scaling %K projection algorithm %U http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1807-03022009000100003