%0 Journal Article %T Watermark Detection and Extraction Using Independent Component Analysis Method %A Kai-Kuang Ma %A Farook Sattar %A Dan Yu %J EURASIP Journal on Advances in Signal Processing %D 2002 %I Springer %R 10.1155/s168761720200046x %X This paper proposes a new image watermarking technique, which adopts Independent Component Analysis (ICA) for watermark detection and extraction process (i.e., dewatermarking). Watermark embedding is performed in the spatial domain of the original image. Watermark can be successfully detected during the Principle Component Analysis (PCA) whitening stage. A nonlinear robust batch ICA algorithm, which is able to efficiently extract various temporally correlated sources from their observed linear mixtures, is used for blind watermark extraction. The evaluations illustrate the validity and good performance of the proposed watermark detection and extraction scheme based on ICA. The accuracy of watermark extraction depends on the statistical independence between the original, key and watermark images and the temporal correlation of these sources. Experimental results demonstrate that the proposed system is robust to several important image processing attacks, including some geometrical transformations ˇé ? ˇ±scaling, cropping and rotation, quantization, additive noise, low pass filtering, multiple marks, and collusion. %K watermarking %K dewatermarking %K independent component analysis (ICA). %U http://dx.doi.org/10.1155/S111086570200046X