%0 Journal Article %T Two component regularity for the Navier-Stokes equations %A Jishan Fan %A Hongjun Gao %J Electronic Journal of Differential Equations %D 2009 %I Texas State University %X We consider the regularity of weak solutions to the Navier-Stokes equations in $mathbb{R}^3$. Let $u:=(u_1,u_2,u_3)$ be a weak solution and $widetilde{u}:=(u_1,u_2,0)$. We prove that $u$ is strong solution if $ ablawidetilde{u}$ satisfy Serrin's type criterion. %K Navier-Stokes equations %K regularity criterion %K two component %K multiplier spaces %K Besov spaces %U http://ejde.math.txstate.edu/Volumes/2009/121/abstr.html