%0 Journal Article %T Sub-elliptic boundary value problems for quasilinear elliptic operators %A Dian K. Palagachev %A Peter R. Popivanov %J Electronic Journal of Differential Equations %D 1997 %I Texas State University %X $C^{2+alpha}(overline{Omega})$ is proved for the oblique derivative problem $$cases{ a^{ij}(x)D_{ij}u + b(x,,u,,Du)=0 & in $Omega$,cr partial u/partial ell =varphi(x) & on $partial Omega$cr} $$ in the case when the vector field $ell(x)=(ell^1(x),ldots,ell^n(x))$ is tangential to the boundary $partial Omega$ at the points of some non-empty set $Ssubsetpartial Omega$, and the nonlinear term $b(x,,u,,Du)$ grows quadratically with respect to the gradient $Du$. %K Quasilinear elliptic operator %K degenerate oblique derivative problem %K sub-elliptic estimates. %U http://ejde.math.txstate.edu/Volumes/1997/01/abstr.html