%0 Journal Article %T Periodic solutions for neutral functional differential equations with impulses on time scales %A Yongkun Li %A Xiaoyan Dou %A Jianwen Zhou %J Electronic Journal of Differential Equations %D 2012 %I Texas State University %X Let $mathbb{T}$ be a periodic time scale. We use Krasnoselskii's fixed point theorem to show that the neutral functional differential equation with impulses $$displaylines{ x^{Delta}(t)=-A(t)x^sigma(t)+g^Delta(t,x(t-h(t)))+f(t,x(t),x(t-h(t))),quad t eq t_j,;tinmathbb{T},cr x(t_j^+)= x(t_j^-)+I_j(x(t_j)), quad jin mathbb{Z}^+ }$$ has a periodic solution. Under a slightly more stringent conditions we show that the periodic solution is unique using the contraction mapping principle. %K Positive periodic solution %K neutral functional differential %K equations %K impulses %K Krasnoselskii fixed point %K time scales %U http://ejde.math.txstate.edu/Volumes/2012/57/abstr.html