%0 Journal Article %T Positive almost periodic solutions for state-dependent delay Lotka-Volterra competition systems %A Yongkun Li %A Chao Wang %J Electronic Journal of Differential Equations %D 2012 %I Texas State University %X In this article, using Mawhin's continuation theorem of coincidence degree theory, we obtain sufficient conditions for the existence of positive almost periodic solutions for the system of equations $$ dot{u}_i(t)=u_i(t)Big[r_i(t)-a_{ii}(t)u_i(t) -sum_{j=1, j eq i}^na_{ij}(t)u_jig(t- au_j(t,u_1(t), dots,u_n(t))ig)Big], $$ where $r_i,a_{ii}>0$, $a_{ij}geq0(j eq i$, $i,j=1,2,dots,n)$ are almost periodic functions, $ au_iin C(mathbb{R}^{n+1},mathbb{R})$, and $ au_i(i=1,2,dots,n)$ are almost periodic in $t$ uniformly for $(u_1,dots,u_n)^Tinmathbb{R}^n$. An example and its simulation figure illustrate our results. %K Lotka-Volterra competition system %K almost periodic solutions %K coincidence degree %K state dependent delays %U http://ejde.math.txstate.edu/Volumes/2012/91/abstr.html