%0 Journal Article %T Decay results for viscoelastic diffusion equations in absence of instantaneous elasticity %A Mohammad Kafini %J Electronic Journal of Differential Equations %D 2012 %I Texas State University %X We study the diffusion equation in the absence of instantaneous elasticity $$ u_t-int_0^{t}g(t- au )Delta u( au ),d au =0,quad (x,t)in Omega imes (0,+infty ), $$ where $Omega subset mathbb{R}^n$, subjected to nonlinear boundary conditions. We prove that if the relaxation function g decays exponentially, then the solutions is exponential stable. %K Diffusion equation %K instantaneous elasticity %K exponential decay %K relaxation function %K viscoelastic %U http://ejde.math.txstate.edu/Volumes/2012/73/abstr.html