%0 Journal Article %T Existence of solutions for Hardy-Sobolev-Maz'ya systems %A Jian Wang %A Xin Wei %J Electronic Journal of Differential Equations %D 2012 %I Texas State University %X The main goal of this article is to investigate the existence of solutions for the Hardy-Sobolev-Maz'ya system $$displaylines{ -Delta u-lambda frac{u}{|y|^2}=frac{|v|^{p_t-1}}{|y|^t}v,quad hbox{in }Omega,cr -Delta v-lambda frac{v}{|y|^2}=frac{|u|^{p_s-1}}{|y|^s}u,quad hbox{in }Omega,cr u=v=0,quad hbox{on }partial Omega }$$ where $0inOmega$ which is a bounded, open and smooth subset of $mathbb{R}^k imes mathbb{R}^{N-k}$, $2leq k %K Variational identity %K (PS) condition %K linking theorem %K Hardy-Sobolev-Maz'ya inequality %U http://ejde.math.txstate.edu/Volumes/2012/115/abstr.html