%0 Journal Article %T Aerosol influenza transmission risk contours: A study of humid tropics versus winter temperate zone %A Brian P Hanley %A Birthe Borup %J Virology Journal %D 2010 %I BioMed Central %R 10.1186/1743-422x-7-98 %X An influenza transmission risk contour map was developed for T versus RH. Empirical equations were created for estimating: 1. risk relative to temperature and RH, and 2. time parameterized influenza transmission risk. Using the transmission risk contours and equations, transmission risk for each country's locations was compared with influenza reports from the countries. Higher risk enclosed locations in the tropics included new automobile transport, luxury buses, luxury hotels, and bank branches. Most temperate locations were high risk.Environmental control is recommended for public health mitigation focused on higher risk enclosed locations. Public health can make use of the methods developed to track potential vulnerability to aerosol influenza. The methods presented can also be used in influenza modeling. Accounting for differential aerosol transmission using T and RH can potentially explain anomalies of influenza epidemiology in addition to seasonality in temperate climates.The contrasting epidemiology of influenza in the tropics versus temperate regions has been discussed for many years, and it has been accepted for decades that jet aircraft are a major vector for global spread of influenza[1]. This study is an attempt to better understand aerosol influenza transmission for indoor locations by examining temperature and humidity indoors where jet travelers are likely to interact with locals and comparing humid tropical locations with temperate winter ones. In recent years, much attention has been given to the spread of influenza around the world, especially with the continuing H5N1 outbreaks since 2003 and the H1N1 pandemic in 2009. Extensive research has been conducted to understand the mechanism of transmission of influenza virus, including environmental conditions that favor transmission. Various aerosol studies have shown that micron range droplet particles from breathing, talking, coughing and sneezing bear influenza viruses, and that the aerosol route is a %U http://www.virologyj.com/content/7/1/98