%0 Journal Article %T Weak-strong uniqueness of hydrodynamic flow of nematic liquid crystals %A Ji-hong Zhao %A Qiao Liu %J Electronic Journal of Differential Equations %D 2012 %I Texas State University %X This article concerns a simplified model for a hydrodynamic system of incompressible nematic liquid crystal materials. It is shown that the weak-strong uniqueness holds for the class of weak solutions provided that either $(mathbf{u}, ablamathbf{d})in C([0,T),L^3(mathbb{R}^3))$; or $(mathbf{u}, ablamathbf{d})in L^q(0,T; dot{B}^{-1+3/p+2/q}_{p,q} (mathbb{R}^3))$ with $2leq p1$. %K Nematic liquid crystal flow %K weak solutions %K stability %K weak-strong uniqueness %U http://ejde.math.txstate.edu/Volumes/2012/182/abstr.html