%0 Journal Article %T Japanese encephalitis virus infection induces changes of mRNA profile of mouse spleen and brain %A Yang Yang %A Jing Ye %A Xiaohong Yang %A Rong Jiang %A Huanchun Chen %A Shengbo Cao %J Virology Journal %D 2011 %I BioMed Central %R 10.1186/1743-422x-8-80 %X The results of microarray analysis showed that 437 genes in spleen and 1119 genes in brain were differentially expressed in response to JEV infection, with obviously upregulated genes like pro-inflammatory chemokines and cytokines, apoptosis-related proteases and IFN inducible transcription factors. And the significant pathways of differentially expressed genes are involved in cytokine-cytokine receptor interaction, natural killer cell mediated cytotoxicity, antigen processing and presentation, MAPK signaling, and toll-like receptor signaling, etc. The differential expression of these genes suggests a strong antiviral response of host but may also contribute to the pathogenesis of JEV resulting in encephalitis. Quantitative RT-PCR (RT-qPCR) assay of some selected genes further confirmed the results of microarray assay.Data obtained from mRNA microarray suggests that JEV infection causes significant changes of mRNA expression profiles in mouse spleen and brain. Most of differentially expression genes are associated with antiviral response of host, which may provide important information for investigation of JEV pathogenesis and therapeutic method.Japanese encephalitis virus (JEV), a mosquito-borne flavivirus belonging to family Flaviviridae, is responsible for an acute encephalitis and damage to the central nervous system (CNS) in wide areas of southern and eastern Asia. And recently, it has been isolated from previously non-affected areas, such as Australia [1]. Japanese encephalitis (JE) has a high fatality rate of 30% and around half of the JE survivors have severe neurological sequelae [2]. Approximately 50,000 JE cases with 10,000 deaths are reported annually [3]. Following entry into the host system through a mosquito bite, JEV may replicates in various organs such as liver and spleen, and then reaches the central nervous system, resulting in a rapid inflammatory response [4]. According to the observations from studies of other flaviviruses, specifically dengue %U http://www.virologyj.com/content/8/1/80