%0 Journal Article %T Mathematical modelling and evaluation of the different routes of transmission of lumpy skin disease virus %A Reuma Magori-Cohen %A Yoram Louzoun %A Yael Herziger %A Eldad Oron %A Alon Arazi %A Eeva Tuppurainen %A Nahum Y Shpigel %A Eyal Klement %J Veterinary Research %D 2012 %I BioMed Central %R 10.1186/1297-9716-43-1 %X Lumpy skin disease (LSD) is caused by Lumpy skin disease virus (LSDV), a DNA virus of the family Poxviridea and of the genus Capripoxvirus. It is closely related and has high antigenic resemblance to sheep pox and goat pox viruses [1]. The disease is characterized by disseminated appearance of skin lesions, 2-5 cm in diameter and lymphadenopathy, accompanied by high fever which can sometimes exceed 41ˇăC and may last up to 2 weeks [2]. Morbidity rate varies widely depending on the abundance of insect vectors and susceptibility of hosts ranging from 3 to 85% [3]. In general, mortality rate is low (1-3%) but in some occasions up to 75% mortality has been reported [1]. LSD is associated with significant production losses. It is therefore defined as a notifiable disease by the World Organization for Animal Health (OIE).It is well accepted that lumpy skin disease is mechanically transmitted by different types of biting and blood-feeding arthropods, although the importance of the vectors in the transmission of the virus in field conditions is not fully understood. Aedes aegypti was found to successfully transmit the virus between cattle up to 6 days after feeding upon infected animals [4]. However, A. aegypti is absent from Israel, where 3 LSD outbreaks have been documented to date [5]. Stomoxys calcitrans, Culicoides nubeculosus, Culex quinquefasciatus and Anopheles stephensi failed to transmit the virus to susceptible cattle, although no transmission attempt was made immediately after feeding on infected cattle [6]. Since LSDV is transmitted mechanically, such a time frame for transmission is relevant, primarily with interrupted feeders like Stomoxys calcitrans. In light of its high abundance near previous outbreaks of LSD [7], this fly cannot be precluded yet as a potential mechanical vector for LSDV. Further studies are required to investigate the role of biting flies in the transmission of LSDV in experimental and field conditions.In a study performed by Carn and Kitc %U http://www.veterinaryresearch.org/content/43/1/1