%0 Journal Article %T Challenges in translating vascular tissue engineering to the pediatric clinic %A Daniel R Duncan %A Christopher K Breuer %J Vascular Cell %D 2011 %I BioMed Central %R 10.1186/2045-824x-3-23 %X Tissue engineering offers a strategy for constructing autologous grafts and thereby increasing the pool of potential autografts for use as vascular conduits [1]. Using the classical tissue engineering paradigm, autologous cells can be seeded onto a biodegradable tubular scaffold, which provides sites for cell attachment and space for neotissue formation [2]. As the neotissue forms, the scaffold degrades creating a purely biological graft. The resulting neotissue can thus function as a vascular graft in cardiothoracic operations [3]. Extensive large animal studies have demonstrated the feasibility of using tissue engineering methodology to construct conduits for use as large grafts [3-6].Research groups have used a variety of different approaches to develop tissue-engineered vascular grafts (TEVG). Several methods are now in use in the lab and at various stages of clinical development. These include in vivo engineering of blood vessels, using explanted native vessels as a living scaffold for tissue engineering, a variety of biodegradable polymeric scaffolds onto which cell types can be seeded, and scaffold-free approaches [7-9]. The ideal tissue-engineered vascular conduit is not yet in use and when it comes to optimizing the translation of this emerging technology, all elements of the process of TEVG development need to be considered including scaffold materials, cells for seeding grafts, and seeding techniques.Scaffold materials must not only be biodegradable and non-immunogenic, but also must provide space for cell attachment while allowing for appropriate structural integrity until neotissue can form. Standard approaches involve the use of polymers of polyglycolic acid (PGA), polylactic acid (PLA), and poly e-caprolactone (PCL) in varying concentrations to meet the compliance specifications of the vascular system into which the graft is being introduced [10,11]. Electrospinning is a newer approach for creating vascular graft scaffolds that can be made with finely %K Tissue-engineered vascular grafts %K congenital heart disease %K translational research %U http://www.vascularcell.com/content/3/1/23