%0 Journal Article %T MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects %A Robert S Allen %A Junyan Li %A Maria M Alonso-Peral %A Rosemary G White %A Frank Gubler %A Anthony A Millar %J Silence %D 2010 %I BioMed Central %R 10.1186/1758-907x-1-18 %X For these target genes, functional analysis failed to identify miR159 regulation that resulted in any major phenotypic impact, either at the morphological or molecular level. This appears to be mainly due to the quiescent nature of the remaining family member, MIR159c. Although its expression overlaps in a temporal and spatial cell-specific manner with a subset of these targets in anthers, the abundance of miR159c is extremely low and concomitantly a mir159c mutant displays no anther defects. Examination of potential miR159c targets with conserved miR159 binding sites found neither their spatial or temporal expression domains appeared miR159 regulated, despite the detection of miR159-guided cleavage products by 5'-RACE. Moreover, expression of a miR159-resistant target (mMYB101) resulted predominantly in plants that are indistinguishable from wild type. Plants that displayed altered morphological phenotypes were found to be ectopically expressing the mMYB101 transgene, and hence were misrepresentative of the in vivo functional role of miR159.This study presents a novel explanation for a paradox common to plant and animal miRNA systems, where among many potential miRNA-target relationships usually only a few appear physiologically relevant. The identification of a quiescent miR159c:target gene regulatory module in anthers provides a likely rationale for the presence of conserved miR159 binding sites in many targets for which miR159 regulation has no obvious functional role. Remnants from the demise of such modules may lead to an overestimation of miRNA regulatory complexity when investigated using bioinformatic, 5'-RACE or transgenic approaches.MicroRNAs (miRNAs) regulate gene expression by guiding the RNA induced silencing complex (RISC) to gene targets via base pairing complementarity [1]. For most plant miRNAs, their target mRNAs contain motifs that have perfect/near perfect complementarity resulting in a regulatory mechanism that includes RISC-directed slicing [2 %U http://www.silencejournal.com/content/1/1/18