%0 Journal Article %T Units in Abelian Group Algebras Over Direct Products of Indecomposable Rings %A Peter Danchev %J Cubo : A Mathematical Journal %D 2012 %I Universidad de La Frontera and Universidade Federal de Pernambuco %X Let R be a commutative unitary ring of prime characteristic p which is a direct product of indecomposable subrings and let G be a multiplicative Abelian group such that G0/Gp is nite. We characterize the isomorphism class of the unit group U(RG) of the group algebra RG. This strengthens recent results due to Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011). Sea R un anillo conmutativo y unitario de caracter¨ªstica prima p, que es producto directo de subanillos indescomponibles y sea G un grupo multiplicativo y abeliano tal que G0/Gp p es finito. Caracterizamos las clases de isomorfismo del grupo unitario U(RG) del ¨¢lgebra del grupo RG. Estos fuertes y recientes resultados se deben a Mollov-Nachev (Commun. Algebra, 2006) and Danchev (Studia Babes Bolyai - Mat., 2011). %K groups %K rings %K group rings %K indecomposable rings %K units %K direct decompositions %K isomorphisms %U http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0719-06462012000100005