%0 Journal Article %T Radiation therapy planning with photons and protons for early and advanced breast cancer: an overview %A Damien C Weber %A Carmen Ares %A Antony J Lomax %A John M Kurtz %J Radiation Oncology %D 2006 %I BioMed Central %R 10.1186/1748-717x-1-22 %X Postoperative radiation therapy very substantially improves local control in the treatment of both early and locally-advanced breast cancer. Trial overviews indicate that for every four local failures prevented, one fewer death from breast cancer can be expected. However, this long-term benefit can be mitigated somewhat by excess mortality due to cardiovascular disease and secondary malignancies [1]. Although local radiotherapy limited to the breast or chest wall can usually be administered using simple planning techniques with minimal late toxicity, regional treatment including lymph nodal areas can expose non-target organs to substantial radiation doses. One of the principal goals of treatment planning is thus to reduce any potential negative consequences of radiotherapy on long-term morbidity and mortality. This represents a particularly difficult challenge in the setting of loco-regional radiotherapy.In recent years, great advances have been made in the planning and delivery of radiotherapy, as well as the development of existing imaging modalities. Computerized planning systems in conjunction with modern imaging studies are routinely used in breast cancer treatments. Three-dimensional conformal radiotherapy and, more recently, intensity modulated radiation therapy (IMRT) are being implemented increasingly in clinical use [2-6]. The delivery of optimal dose conformation can also be achieved with protons. Proton beam therapy is characterized by remarkable depth-dose distributions that have a low to median entrance dose, followed by a unified high-dose region (Bragg peak region) in the tumor area, followed by a steep fall-off to zero-dose distal to the target. As a result, physical dose distributions with protons are both highly conformal and homogeneous. Several proton facilities are currently operating worldwide and many more are scheduled to open in coming years. Proton beam therapy, however, is more costly than conventional treatment, and any potential benefit %U http://www.ro-journal.com/content/1/1/22