%0 Journal Article %T MINING FEATURE-OPINION IN EDUCATIONAL DATA FOR COURSE IMPROVEMENT %A Alaa El-Halees %J International Journal of New Computer Architectures and their Applications %D 2011 %I Society of Digital Information and Wireless Communications %X In academic institutions, student comments about courses can be considered as a significant informative resource to improve teaching effectiveness. This paper proposes a model that extracts knowledge from students' opinions to improve and to measure the performance of courses. Our task is to use user-generated contents of students to study the performance of a certain course and to compare the performance of some courses with each others. To do that, we propose a model that consists of two main components: Feature extraction to extract features, such as teacher, exams and resources, from the user-generated content for a specific course. And classifier to give a sentiment to each feature. Then we group and visualize the features of the courses graphically. In this way, we can also compare the performance of one or more courses. %U http://sdiwc.net/digital-library/web-admin/upload-pdf/00000088.pdf