%0 Journal Article %T Localization of proteins in the cell wall of Mycobacterium avium subsp. paratuberculosis K10 by proteomic analysis %A Zhiguo He %A Jeroen De Buck %J Proteome Science %D 2010 %I BioMed Central %R 10.1186/1477-5956-8-21 %X Mycobacterium avium subsp. paratuberculosis is a member of the M. avium complex, next to three other subspecies M. avium subsp. hominissuis, Mycobacterium avium subsp. avium and M. avium subsp. silvaticum and the species M. intracellulare. M. avium subspecies hominissuis and M. intracellulare are widely distributed in the environment and also inhabit healthy animal and human intestines, but do not usually cause disease unless the host is debilitated or immunocompromised. M. avium subsp. paratuberculosis, in contrast, is a pathogen which causes a debilitating chronic enteritis in ruminants[1] and has been implicated in Crohn's disease in humans [2]. Unfortunately, the mechanisms of virulence that control M. avium subsp. paratuberculosis persistence during infection are poorly understood and the key steps for developing paratuberculosis remain elusive. The current challenge is to identify elements that are essential for virulence and survival of the bacterium during infection, especially those that influence the immune responses against M. avium subsp. paratuberculosis.A characteristic feature of mycobacteria is the thick, waxy cell wall, a highly impermeable outer surface, which enables mycobacteria to survive in extreme environmental conditions and the presence of antibiotics. This cell wall contains 60% lipid, which confers on it the properties of acid fastness (the ability to resist decolorization by acidified alcohol), hydrophobicity, and increased resistance to chemicals (e.g. chlorine) and physical processes (e.g. pasteurization)[3].Bacterial surface proteins play a fundamental role in the interaction between the bacterial cell and its environment [4-6]. They are involved in adhesion to and invasion of host cells, in sensing the chemical and physical conditions of the external milieu and sending appropriate signals to the cytoplasmic compartment, in mounting defenses against host responses and in toxicity. In this study, we also aimed to identify surface-expose %U http://www.proteomesci.com/content/8/1/21