%0 Journal Article %T Proteome differences associated with fat accumulation in bovine subcutaneous adipose tissues %A Yong Zhao %A Urmila Basu %A Michael V Dodson %A John A Basarb %A Le Guan %J Proteome Science %D 2010 %I BioMed Central %R 10.1186/1477-5956-8-14 %X Approximately 541-580 protein spots were detected and compared in each crossbred group, and 33 and 36 protein spots showed expression differences between tissues with high and low BF thicknesses from HEAN and CHAR crossbed, respectively. The annexin 1 protein was highly expressed in both crossbred steers that had a higher BF thickness (p < 0.05) and this was further validated by a western blot analysis. In 13 tissues of CHAR animals and 22 tissues of HEAN animals, the relative expression of annexin 1 was significantly different (p < 0.05) between tissues with high and low BF thicknesses.The increased expression of annexin 1 protein has been found to be associated with higher BF thickness in both crossbred steers. This result lays the foundation for future studies to develop the protein marker for assessing animals with different BF thickness.The adipose tissue content of meat products not only has an impact on the economic value for producers, but it also impacts the nutrition and health of red meat consumers. For beef production, it is desirable to produce beef cattle with a moderate amount of adipose tissue in the correct adipose depot (marbling fat) to have carcasses with an acceptable economic value. However, adipose tissue formation in beef cattle is a complicated biological process associated with the genetic background, development, and nutrition of an animal, maintained by unique molecular signaling pathways [1-3]. Gene expression analyses, using a novel in vitro model of cattle adipocytes [4-6], showed that genes for peroxisome proliferator-activated receptors (PPAR¦Ã), CCAAT-enhancer binding proteins (C/EBP¦Á, C/EBP¦Â) and sterol regulatory element binding protein (SREBP 1c) are directly or indirectly involved in the regulation of bovine adipogenesis [7-9]. In addition, the Wdnm1-like protein, a distant member of the whey acidic protein/four-disulfide core family, was shown to be associated with adipogenesis in livestock species as a remodeler of the extracel %U http://www.proteomesci.com/content/8/1/14