%0 Journal Article %T Proteomic analysis of the organic matrix of the abalone Haliotis asinina calcified shell %A Benjamin Marie %A Arul Marie %A Daniel J Jackson %A Lionel Dubost %A Bernard M Degnan %A Christian Milet %A Fr¨¦d¨¦ric Marin %J Proteome Science %D 2010 %I BioMed Central %R 10.1186/1477-5956-8-54 %X Recent expressed sequence tag (EST) investigations of the mantle tissue from the tropical abalone (Haliotis asinina) provide an opportunity to further characterise the proteins in the shell by a proteomic approach. In this study, we have identified a total of 14 proteins from distinct calcified layers of the shell. Only two of these proteins have been previously characterised from abalone shells. Among the novel proteins are several glutamine- and methionine-rich motifs and hydrophobic glycine-, alanine- and acidic aspartate-rich domains. In addition, two of the new proteins contained Kunitz-like and WAP (whey acidic protein) protease inhibitor domains.This is one of the first comprehensive proteomic study of a molluscan shell, and should provide a platform for further characterization of matrix protein functions and interactions.The calcified molluscan shell is an excellent model with which to study the process of biomineral formation. The wide morphological diversity of shell-bearing molluscs (bivalves, gastropods, cephalopods, monoplacophorans and scaphopods) also extends to a tremendous diversity of shell micro-textures. Despite this diversity, molluscan shells are produced by an evolutionarily homologous structure known as the mantle. The polymorph of CaCO3 (primarily aragonite or calcite), along with all other nano-scale features of the biomineral, are thought to be determined and regulated by an extracellular 'cell-free' matrix that is secreted by the mantle. This matrix is incorporated into and surrounds nascent CaCO3 crystals during shell growth. Even though it constitutes only a small part of the total shell weight (1-5%), this matrix is clearly essential for initiating biomineral formation and imparting critical physical properties to the shell such as fracture resistance. The biochemical characteristics of the matrix, usually purified and studied following decalcification of the shell, indicate that it is comprised of a heterogenous set of macromolecules %U http://www.proteomesci.com/content/8/1/54