%0 Journal Article %T Delivering high-resolution landmarks using inkjet micropatterning for spatial monitoring of leaf expansion %A Lisheng Wang %A Simon T Beyer %A Quentin CB Cronk %A Konrad Walus %J Plant Methods %D 2011 %I BioMed Central %R 10.1186/1746-4811-7-1 %X To monitor leaf expansion in two dimensions, at very fine scales, we used a custom designed inkjet micropatterning system to print a grid composed of c. 0.19 mm2 cells on small developing leaves of ivy (Hedera helix) using 40 ¦Ìm dots at a spacing of c. 91 ¦Ìm. The leaves in different growing stages were imaged under magnification to extract the coordinates of the marks which were then used in subsequent computer-assisted leaf expansion analyses. As an example we obtained quantified global and local expansion information and created expansion maps over the entire leaf surface. The results reveal a striking pattern of fine-scale expansion differences over short periods of time. In these experiments, the base of the leaf is a "cold spot" for expansion, while the leaf sinuses are "hot spots" for expansion. We have also measured a strong shading effect on leaf expansion. We discuss the features required to build an inkjet printing apparatus optimized for use in plant science, which will further maximize the range of tissues that can be printed at these scales.To apply inkjet micropatterning to plant studies, we have successfully delivered landmarks on ivy leaf surfaces and achieved high-resolution, two-dimensional monitoring of leaf expansion at different growing stages. The measurement is capable of reliably identifying the fine scale changes during plant growth. As well as delivering landmarks, this technology may be used to deliver microscale targeted biological components such as growth hormones, and possibly be used to pattern sensors directly on the leaves.Inkjet printing is a technique involving ejecting tiny liquid droplets in a non-contact manner onto target object surfaces to form any desired patterns in high resolution. Historically, it has been used almost exclusively for document and image printing, finding considerable success in the consumer electronics market. More recently the potential of this technology has been explored to a greater degree, especially %U http://www.plantmethods.com/content/7/1/1