%0 Journal Article %T Modelling the global constraints of temperature on transmission of Plasmodium falciparum and P. vivax %A Peter W Gething %A Thomas P Van Boeckel %A David L Smith %A Carlos A Guerra %A Anand P Patil %A Robert W Snow %A Simon I Hay %J Parasites & Vectors %D 2011 %I BioMed Central %R 10.1186/1756-3305-4-92 %X We defined a dynamic biological model that incorporated the principal mechanisms of temperature dependency in the malaria transmission cycle and used it with fine spatial and temporal resolution temperature data to evaluate time-series of temperature suitability for transmission of Plasmodium falciparum and P. vivax throughout an average year, quantified using an index proportional to the basic reproductive number. Time-series were calculated for all 1 km resolution land pixels globally and were summarised to create high-resolution maps for each species delineating those regions where temperature precludes transmission throughout the year. Within suitable zones we mapped for each pixel the number of days in which transmission is possible and an integrated measure of the intensity of suitability across the year. The detailed evaluation of temporal suitability dynamics provided by the model is visualised in a series of accompanying animations.These modelled products, made available freely in the public domain, can support the refined delineation of populations at risk; enhance endemicity mapping by offering a detailed, dynamic, and biologically driven alternative to the ubiquitous empirical incorporation of raw temperature data in geospatial models; and provide a rich spatial and temporal platform for future biological modelling studies.Amongst many natural and anthropogenic factors, ambient temperature plays a key role in determining the suitability of local environments for transmission of human malaria. At the extremes, temperature regimes constrain the geographical extent of the disease and, within this envelope, contribute to determining its intensity. These constraints are temporally dynamic, with fluctuations in transmission suitability and intensity driven by seasonal and inter-annual temperature cycles. The importance of temperature as an environmental determinant of malaria endemicity arises from a series of effects on the life cycles of the Plasmodium paras %U http://www.parasitesandvectors.com/content/4/1/92