%0 Journal Article %T Characterization of simple sequence repeats (SSRs) from Phlebotomus papatasi (Diptera: Psychodidae) expressed sequence tags (ESTs) %A Omar Hamarsheh %A Ahmad Amro %J Parasites & Vectors %D 2011 %I BioMed Central %R 10.1186/1756-3305-4-189 %X Simple sequence repeats (SSRs) were characterized in P. papatasi expressed sequence tags (ESTs) derived from a public database, National Center for Biotechnology Information (NCBI). A total of 42,784 sequences were mined, and 1,499 SSRs were identified with a frequency of 3.5% and an average density of 15.55 kb per SSR. Dinucleotide motifs were the most common SSRs, accounting for 67% followed by tri-, tetra-, and penta-nucleotide repeats, accounting for 31.1%, 1.5%, and 0.1%, respectively. The length of microsatellites varied from 5 to 16 repeats. Dinucleotide types; AG and CT have the highest frequency. Dinucleotide SSR-ESTs are relatively biased toward an excess of (AX)n repeats and a low GC base content. Forty primer pairs were designed based on motif lengths for further experimental validation.The first large-scale survey of SSRs derived from P. papatasi is presented; dinucleotide SSRs identified are more frequent than other types. EST data mining is an effective strategy to identify functional microsatellites in P. papatasi.The sand fly Phlebotomus (Phlebotomus) papatasi (Scopoli) is a natural vector of Leishmania major (Yakimov & Schokov), which is the causative agent of zoonotic cutaneous leishmaniasis in the Middle East and other countries [1,2]. Simple sequence repeats (SSRs) or microsatellites, are common components of eukaryotic genomes and are short, repeated nucleotide sequence elements arrayed in tandem and flanked by non-repetitive regions [3,4]. SSRs often harbour high levels of polymorphism, in terms of repeat number, and have been developed into one of the most common classes of genetic markers due to their high degree of ubiquity, co-dominance and variability in number among individuals. In recent years, microsatellites were extensively used to investigate genetic variability and the population structures of a wide range of organisms, including parasites and vectors of infectious diseases [5-13]. In the absence of genome sequences for sand flies, %U http://www.parasitesandvectors.com/content/4/1/189