%0 Journal Article %T Climbing Robot for Ferromagnetic Surfaces with Dynamic Adjustment of the Adhesion System %A Manuel F. Silva %A Ramiro S. Barbosa %A Ant¨®nio L. C. Oliveira %J Journal of Robotics %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/906545 %X This paper presents a climbing robot with wheeled locomotion and adhesion through permanent magnets, developed with the intention of being used in the inspection of different types of man-made ferromagnetic structures, such as towers for wind turbines, fuel storage tanks, and ship hulls. In this paper are presented the main considerations thought for its project, as well as several constructive aspects, among which are detailed its mechanical and electrical construction, the implemented control architecture, and the human-machine interface developed for the manual and automatic control of the vehicle while in operation. Although it can be manually controlled, the vehicle is designed to have a semiautonomous behavior, allowing a remote inspection process controlled by a technician, this way reducing the risks associated with the human inspection of tall structures and ATEX places. The distinguishing characteristic of this robot is its dynamic adjustment system of the permanent magnets in order to assure the machine adhesion to the surfaces, even when crossing slightly irregular and curved surfaces with a large radius. 1. Introduction The interest in the development of climbing robots has grown rapidly in recent years. Climbing robots are useful devices that can be adopted in a variety of applications such as maintenance, building, inspection, and safety, mainly in the process and construction industries. These systems are mainly adopted in places where direct access by a human operator is very expensive, because of the need for scaffolding or special structures, or very dangerous, due to the presence of an hostile environment. The main motivations for its use are to increase the operation efficiency, by eliminating the costly assembly of scaffolding, or to protect human health and safety in hazardous tasks. Several climbing robots have already been developed, and others are under development, for applications ranging from cleaning to inspection of difficult to reach constructions [1]. A wall-climbing robot should not only be light, so that it may reduce excessive adhesion forces, but also have large payload in order to carry instrumentations and ancillary equipment, for the tasks it is designed, during navigation. These machines should be capable of travelling over different types of surfaces, with different inclinations, such as floors, walls, ceilings, and to walk between such surfaces [2¨C5]. Furthermore, they should be able of adapting and reconfiguring for various environment conditions and to be self-contained. In recent decades, there have been %U http://www.hindawi.com/journals/jr/2012/906545/