%0 Journal Article %T Gene expression analysis in lymphoblasts derived from patients with autism spectrum disorder %A Yuka Yasuda %A Ryota Hashimoto %A Hidenaga Yamamori %A Kazutaka Ohi %A Motoyuki Fukumoto %A Satomi Umeda-Yano %A Ikuko Mohri %A Akira Ito %A Masako Taniike %A Masatoshi Takeda %J Molecular Autism %D 2011 %I BioMed Central %R 10.1186/2040-2392-2-9 %X We measured mRNA expression levels of NLGN3/4, NRXN1, SHANK3, MeCP2, NHE9 and AKT1 in lymphoblastoid cells from 35 patients with ASD and 35 healthy controls, as well as from 45 patients with schizophrenia and 45 healthy controls, using real-time quantitative reverse transcriptase polymerase chain reaction assays.The mRNA expression levels of NLGN3 and SHANK3 normalized by ¦Â-actin or TBP were significantly decreased in the individuals with ASD compared to controls, whereas no difference was found in the mRNA expression level of MeCP2, NHE9 or AKT1. However, normalized NLGN3 and SHANK3 gene expression levels were not altered in patients with schizophrenia, and expression levels of NLGN4 and NRXN1 mRNA were not quantitatively measurable in lymphoblastoid cells.Our results provide evidence that the NLGN3 and SHANK3 genes may be differentially expressed in lymphoblastoid cell lines from individuals with ASD compared to those from controls. These findings suggest the possibility that decreased mRNA expression levels of these genes might be involved in the pathophysiology of ASD in a substantial population of ASD patients.Autism spectrum disorder (ASD), also known as pervasive developmental disorder (PDD), is defined as severe and pervasive impairments in the development of reciprocal social interaction and verbal and nonverbal communication skills. These disorders are also characterized by stereotypical behavior, interests and activities. The lifetime morbidity rate of ASD is 0.2% to 1.0% across studies [1]. In addition, twin and family studies of ASD have demonstrated a high heritability of approximately 90% [2], indicating that ASD is a heterogeneous condition that is likely to result from the combined effects of multiple genetic factors interacting with environmental factors. Recent genetic studies have identified several vulnerability loci and genetic mutations that cause ASD. One of the most striking revelations is the important role of genes that encode proteins at %U http://www.molecularautism.com/content/2/1/9