%0 Journal Article %T Examination and simulation of composite materials Al-Al2O3 tribological properties %A L.A. Dobrza¨˝ski %A M. Kremzer %A J. Trzaska %A A. Nagel %J Archives of Computational Materials Science and Surface Engineering %D 2009 %I %X Purpose: The purpose of this paper is examination and simulation of tribological properties of composite materials based on porous ceramic preforms infiltrated by eutectic aluminium alloy.Design/methodology/approach: The material for investigations was fabricated by pressure infiltration method of ceramic porous preforms. The eutectic aluminium alloy EN AC ¨C AlSi12 was use as a matrix while as reinforcement were used ceramic preforms fabricated by sintering of Al2O3 Alcoa CL 2500 powder with addition of pore forming agents as carbon fibres Sigrafil C10 M250 UNS manufactured by SGL Carbon Group company. The wear resistance was measured by the use of device designed in the Institute of Engineering Materials and Biomaterials. The device realize dry friction wear mechanism of reciprocating movement condition. The simulation of influence of load and number of cycles on tribological properties was by the use of neural networks made.Findings: The developed technology of manufacturing of composite materials with the pore ceramic Al2O3 infiltration ensures expected tribological properties moreover those properties can by simulated by the use of neural network.Practical implications: The composite materials made by the developed method can find application as the alternative material for elements fabricated from light metal matrix composite material reinforced with ceramic fibrous preforms.Originality/value: The obtained results show the possibility of manufacturing the composite materials with expected tribological properties by the pressure infiltration method of porous preforms based on the ceramic particles with liquid aluminium alloy. %K Composites %K Infiltration %K Simulation %K Neural networks %U http://www.archicmsse.org/vol09_4/0942.pdf