%0 Journal Article %T Mathematical Modelling of Single- and Two-Phase Flow Problems in the Process Industries Mod¨¦lisation math¨¦matique de probl¨¨mes d'¨¦coulement mono- et bi-phasique dans les industries de transformation %A Markatos N. C. %J Oil & Gas Science and Technology %D 2006 %I Institut Fran?ais du P¨¦trole %R 10.2516/ogst:1993036 %X Many key issuesin design for the process industries are related to the behaviour of fluids in turbulent flow, often involving more than one phase, chemical reaction or heat transfer. Computational-Fluid-Dynamics (CFD) techniques have great potential for analysing these processes and can be of great help to the designer, by reducing the need to resort to cut and try : approaches to the design of complex equipment. The paper presents the fundamental principles of CFD within the context of the so-called finite-domain technique. The procedure can handle one-, two-, and three-dimensional distributions of the variables in space, steady or transient processes, multi-phase processes, and effects such as turbulence, compressibility of phases, buoyancy, phase-change, chemical reactions, gravity stratification, etc. Demonstrations are made of the application of the procedure to the numerical computation of some process industry situations, such as those occurring in adsorbers/regenerators, combustors, cement kilns, and heat - exchangers. It is concluded that :- The finite - domain versions of the differential equations are soluble, with modest computer costs;- The solutions are always physically plausible; and,- There is a need for extensive evaluation and validation of CFD physical and chemical sub-models, particularly those concerning turbulence, chemical kinetics and interphase-transport processes. Bon nombre de difficult¨¦s de conception des proc¨¦d¨¦s industriels sont li¨¦s au comportement des fluides en ¨¦coulement turbulent, qui font souvent intervenir plusieurs phases, r¨¦actions chimiques ou transferts thermiques. Les techniques de dynamique des fluides assist¨¦e par ordinateur (CFD) permettent d'analyser ces proc¨¦d¨¦s et peuvent apporter une aide consid¨¦rable ¨¤ la conception en ¨¦liminant le recours aux m¨¦thodes exp¨¦rimentales pour l'¨¦tude d'¨¦quipements complexes. Cette communication pr¨¦sente les principes fondamentaux de la CFD dans le contexte de ce que l'on appelle la technique du domaine fini. Cette m¨¦thode peut traiter des distributions mono-, bi- ou tri-dimensionnelles de variables dans l'espace, des proc¨¦d¨¦s stables ou transitoires, des proc¨¦d¨¦s polyphasiques, et des effets tels que turbulence, compressibilit¨¦ des phases, effet de la gravit¨¦, changement de phase, r¨¦actions chimiques, stratification par gravit¨¦, etc. On d¨¦montre l'application de la proc¨¦dure au calcul num¨¦rique d'un certain nombre de proc¨¦d¨¦s ou de situations industrielles, par exemple : adsorbeurs/r¨¦g¨¦n¨¦rateurs, chambres de gaz¨¦ification, fours ¨¤ ciment et ¨¦changeurs de chaleur. L'auteur c %U http://dx.doi.org/10.2516/ogst:1993036