%0 Journal Article %T Smart Battery Thermal Management for PHEV Efficiency Une gestion avanc¨¦e de la thermique de la batterie basse tension de traction pour optimiser l¡¯efficacit¨¦ d¡¯un v¨¦hicule hybride ¨¦lectrique rechargeable %A Lefebvre L. %J Oil & Gas Science and Technology %D 2013 %I Institut Fran?ais du P¨¦trole %R 10.2516/ogst/2012076 %X A smart battery thermal management is crucial for vehicle performances and battery lifetime targets achievements when electric and plug-in hybrid electric vehicles are concerned. The thermal system needs to be designed and tuned in accordance and compromises with powertrain and vehicle requirements, battery pack architecture, environmental constraints, costs, weight, etc., in a process that will be described in the first part of this paper. Among the portfolio of battery thermal management technologies, these items will be illustrated by two examples: thermal management by cabin air and by refrigerant in a direct cooling, enlightening a decision process. A simplified battery thermo-electric simulation model, which the second part of our work focuses on, has been built, first for both thermal and energetic balance dimensioning of the battery thermal management system. Examples are given on these two perspectives. That simplified simulation model has also identified some promising thermal management strategies for improving vehicle efficiency and performances and battery lifetime. That is the task of the last part of this paper. Battery heating has shown opportunities for improving energy and power availability at cold conditions and, thus, electric drive availability and autonomy. Post-cooling the battery at the end of a journey and its pre-conditioning before the following journey, not only improve vehicle efficiency, electric drive availability and autonomy, but also enhance battery lifetime and compromises with cabin thermal comfort. Others promising strategies optimizing the relation between vehicle performances and battery lifetime are still under investigations. L¡¯atteinte des performances et des prestations requises d¡¯un v¨¦hicule ¨¦lectrique ou hybride ¨¦lectrique rechargeable n¨¦cessite un thermomanagement intelligent de la batterie basse tension de traction. Ce thermomanagement est incontournable pour respecter dans le m¨ºme temps la disponibilit¨¦ d¡¯¨¦nergie de traction ¨¦lectrique et la durabilit¨¦ de la batterie. La conception du syst¨¨me de gestion thermique de la batterie basse tension doit donc prendre en compte les exigences requises de la cha ne de traction et du v¨¦hicule, la conception et l¡¯architecture du pack batterie, les contraintes d¡¯environnement, au moindre co t et au moindre poids, etc., tout en optimisant les compromis entre ces param¨¨tres souvent antagonistes. Le processus de conception du thermomanagement de la batterie basse tension de traction fait l¡¯objet de la premi¨¨re partie de cet article. Ce processus sera illustr¨¦ par deux exem %U http://dx.doi.org/10.2516/ogst/2012076