%0 Journal Article %T Optimization of Hybrid Power Trains by Mechanistic System Simulations Optimisation de groupes motopropulseurs ¨¦lectriques hybrides par simulation du syst¨¨me m¨¦canique %A Katra£¿nik T. %A Wurzenberger J. C. %J Oil & Gas Science and Technology %D 2013 %I Institut Fran?ais du P¨¦trole %R 10.2516/ogst/2012100 %X The paper presents a mechanistic system level simulation model for mode/big hybrid and conventional vehicle topologies. The paper addresses the Dynamic interaction between different domains: internal combustion engine. exhaust after treatment devices, electric components. mechanical drive train. cooling circuit system and corresponding control units. To achieve a good ratio between accuracy. predictability and computational speed of the model an innovative time domain decoupling is presented, which is based on applying domain specific integration steps to ditferent domains and subsequent consistent cross-domain coupling ol¡¯thefluxes. In addition, a computationally efficient frunieveork for transporting active and passive gaseous species is introduced to combine computational efficiency with the need for modeling pollutant transport in the gas path. The applicability and versatility of the mechanistic system level simulations model is presented through analyses of transient phenomena caused by the high interdependency of the sub-systems, i.e. domains. Results of a hyt¡¯hrid vehicle are compared to results of a conventional vehicle to highlight differences in operating regimes of partiular components that are inherent to particular poster train topology. L¡¯article pr¨¦sente un mod¨¨le de simulation au niveau m¨¦canique destin¨¦ ¨¤ la mod¨¦lisation de topologies de v¨¦hicules hydrides et conventionnels. L¡¯article d¨¦crit l¡¯interaction dynamique entre diff¨¦rents domaines : moteur ¨¤ combustion interne, dispositifs de post-traitement d¡¯¨¦chappement, composants ¨¦lectriques, cha ne cin¨¦matique m¨¦canique, circuit de refroidissement et les unit¨¦s de contr le correspondantes. Afin d¡¯obtenir un rapport correct entre pr¨¦cision, pr¨¦visibilit¨¦ et vitesse de calculs du mod¨¨le, un d¨¦couplage innovant du domaine temporel est pr¨¦sent¨¦, lequel est bas¨¦ sur l¡¯application ¨¤ diff¨¦rents domaines, d¡¯¨¦tapes d¡¯int¨¦gration sp¨¦cifiques au domaine et sur un couplage inter-domaines coh¨¦rent ult¨¦rieur des flux. En outre, une structure de calculs efficace permettant la simulation du transport d¡¯esp¨¨ces gazeuses actives et passives est introduite de mani¨¨re ¨¤ combiner l¡¯efficacit¨¦ des calculs ¨¤ la n¨¦cessit¨¦ d¡¯une mod¨¦lisation du transport des polluants clans le circuit des gaz. L¡¯applicabilit¨¦ et la versatilit¨¦ du mod¨¨le de simulation au niveau m¨¦canique sont pr¨¦sent¨¦es au moyen d¡¯analyses des ph¨¦nom¨¨nes transitoires provoqu¨¦s par l¡¯interd¨¦pendance ¨¦lev¨¦e des sous-syst¨¨mes, c¡¯est-¨¤-dire les domaines. Les r¨¦sultats obtenus pour les v¨¦hicules hybrides sont compar¨¦s a ceux obtenus pour les v¨¦hicules %U http://dx.doi.org/10.2516/ogst/2012100