%0 Journal Article %T SCHULTZ POLYNOMIALS OF COMPOSITE GRAPHS %A Bijan Taeri %A Mehdi Eliasi %J Applicable Analysis and Discrete Mathematics %D 2008 %I University of Belgrade and Academic Mind %R 10.2298/aadm0802285e %X For a connected graph $G$, the {sc Schultz} and modified {sc Schultz} polynomials, introduced by {sc I. Gutman:} {it Some relations between distance-based polynomials of trees.} Bulletin, Classe des Sciences Math'ematiques et Naturelles, Sciences math'{e}matiques, Vol. CXXXI, extbf{30} (2005) 1--7, are defined as$H_1(G,x)=fraccc{1}{2}sum { (delta_u+ delta_v) x^{d(u,v|G)}mid u,v in V(G), u eq v }$ and $H_2(G,x)=fraccc{1}{2}sum{ (delta_u delta_v) x^{d(u,v| G)}mid u,v in V(G), u eq v}$, respectively, where $delta_u$ is the degree of vertex $u$,$d(u,v| G)$ is the distance between $u$ and $v$ and $V(G)$ is thevertex set of $G$. In this paper we find identities for the{sc Schultz} and modified {sc Schultz} polynomials of the sum, join and composition of graphs. As an application of our results we findthe {sc Schultz} polynomial of $C_4$ nanotubes. %K Schultz index %K Schultz polynomial %K Wiener index %K distance %U http://pefmath.etf.bg.ac.yu/vol2num2/AADM-Vol2-No2-285-296.pdf