%0 Journal Article %T On the Meaning of Affinity Limits in B-Cell Epitope Prediction for Antipeptide Antibody-Mediated Immunity %A Salvador Eugenio C. Caoili %J Advances in Bioinformatics %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/346765 %X B-cell epitope prediction aims to aid the design of peptide-based immunogens (e.g., vaccines) for eliciting antipeptide antibodies that protect against disease, but such antibodies fail to confer protection and even promote disease if they bind with low affinity. Hence, the Immune Epitope Database (IEDB) was searched to obtain published thermodynamic and kinetic data on binding interactions of antipeptide antibodies. The data suggest that the affinity of the antibodies for their immunizing peptides appears to be limited in a manner consistent with previously proposed kinetic constraints on affinity maturation in vivo and that cross-reaction of the antibodies with proteins tends to occur with lower affinity than the corresponding reaction of the antibodies with their immunizing peptides. These observations better inform B-cell epitope prediction to avoid overestimating the affinity for both active and passive immunization; whereas active immunization is subject to limitations of affinity maturation in vivo and of the capacity to accumulate endogenous antibodies, passive immunization may transcend such limitations, possibly with the aid of artificial affinity-selection processes and of protein engineering. Additionally, protein disorder warrants further investigation as a possible supplementary criterion for B-cell epitope prediction, where such disorder obviates thermodynamically unfavorable protein structural adjustments in cross-reactions between antipeptide antibodies and proteins. 1. Introduction Antibody-mediated immunity is the basis of most conventional approaches to immunization, which protect against or treat disease by means of antibodies that are either endogenous (i.e., produced via active immunization, notably through the administration of vaccines that elicit antibody responses) or exogenous (i.e., acquired via passive immunization through the administration of preformed antibodies from some external source, such as a human or animal donor). Historically, these approaches have been developed and pursued mainly for the prevention and control of communicable infectious diseases viewed as public-health problems, which is ever more crucial to adequately address current and anticipated global-health challenges posed by emerging and reemerging pathogens that cause pandemics and panzootics (both of which may be inextricably linked in cases of zoonoses such as avian and swine influenza) [1]. Yet, the envisioned practical applications of antibody-mediated immunity increasingly include therapy for and prophylaxis against diseases such as cancer and %U http://www.hindawi.com/journals/abi/2012/346765/