%0 Journal Article %T Rapid Detection and Identification of Yersinia pestis from Food Using Immunomagnetic Separation and Pyrosequencing %A Kingsley K. Amoako %A Michael J. Shields %A Noriko Goji %A Chantal Paquet %A Matthew C. Thomas %A Timothy W. Janzen %A Cesar I. Bin Kingombe %A Arnold J. Kell %A Kristen R. Hahn %J Journal of Pathogens %D 2012 %I Hindawi Publishing Corporation %R 10.1155/2012/781652 %X Interest has recently been renewed in the possible use of Y. pestis, the causative agent of plague, as a biological weapon by terrorists. The vulnerability of food to intentional contamination coupled with reports of humans having acquired plague through eating infected animals that were not adequately cooked or handling of meat from infected animals makes the possible use of Y. pestis in a foodborne bioterrorism attack a reality. Rapid, efficient food sample preparation and detection systems that will help overcome the problem associated with the complexity of the different matrices and also remove any ambiguity in results will enable rapid informed decisions to be made regarding contamination of food with biothreat agents. We have developed a rapid detection assay that combines the use of immunomagnetic separation and pyrosequencing in generating results for the unambiguous identification of Y. pestis from milk (0.9 CFU/mL), bagged salad (1.6£¿CFU/g), and processed meat (10£¿CFU/g). The low detection limits demonstrated in this assay provide a novel tool for the rapid detection and confirmation of Y. pestis in food without the need for enrichment. The combined use of the iCropTheBug system and pyrosequencing for efficient capture and detection of Y. pestis is novel and has potential applications in food biodefence. 1. Introduction Plague, caused by Yersinia pestis, has given rise to three major pandemics and is considered one of the most devastating diseases in human history [1]. It still poses a significant threat to human health and remains a current threat in many parts of the world with about 2¨C3000 cases reported annually [2]. Due to the ease of transmission and the reappearance of plague in several countries, it has been recently categorized as a reemerging disease [3]. Furthermore, interest has been renewed in the possible use of Y. pestis as a biological weapon by terrorists, as it could cause mass casualties if dispersed as an aerosol [4]. Y. pestis is most commonly transmitted through flea bites in animals and the disease is manifested as bubonic, septicemic, or pneumonic plague [2, 5]. However, human plague has also been acquired through eating infected animals that were not adequately cooked or through the handling of meat from infected animals [6¨C13]. These reports demonstrate that human plague can be acquired through the oropharyngeal route and hence poses a significant public health risk. The vulnerability of food has been demonstrated by the intentional contamination of salad bars in the United States with Salmonella typhimurium, and %U http://www.hindawi.com/journals/jpath/2012/781652/