%0 Journal Article %T Quantum dot-induced cell death involves Fas upregulation and lipid peroxidation in human neuroblastoma cells %A Angela O Choi %A Sung Ju Cho %A Julie Desbarats %A Jasmina Lovri£¿ %A Dusica Maysinger %J Journal of Nanobiotechnology %D 2007 %I BioMed Central %R 10.1186/1477-3155-5-1 %X We show here that QD surface modifications with N-acetylcysteine (NAC) alter QD physical and biological properties. In human neuroblastoma (SH-SY5Y) cells, NAC modified QDs were internalized to a lesser extent and were less cytotoxic than unmodified QDs. Cytotoxicity was correlated with Fas upregulation on the surface of treated cells. Alongside the increased expression of Fas, QD treated cells had increased membrane lipid peroxidation, as measured by the fluorescent BODIPY-C11 dye. Moreover, peroxidized lipids were detected at the mitochondrial level, contributing to the impairment of mitochondrial functions as shown by the MTT reduction assay and imaged with confocal microscopy using the fluorescent JC-1 dye.QD core and surface compositions, as well as QD stability, all influence nanoparticle internalization and the consequent cytotoxicity. Cadmium telluride QD-induced toxicity involves the upregulation of the Fas receptor and lipid peroxidation, leading to impaired neuroblastoma cell functions. Further improvements of nanoparticles and our understanding of the underlying mechanisms of QD-toxicity are critical for the development of new nanotherapeutics or diagnostics in nano-oncology.Neuroblastoma is the most frequently occurring extracranial solid tumour in children, accounting for 9% of all childhood cancers, with poor prognosis [1]. This malignant tumour arises from neuroepithelial cells of the sympathetic nervous system early in development, and is typically found in the adrenal medulla, abdomen, chest or neck [2]. Neuroblastoma, however, remains a therapeutic challenge as current surgical and chemical treatments are insufficient to prevent tumour recurrence, metastasis and progression [3]. Accurate disease staging is critical for appropriate therapeutic intervention, but existing imaging tools are still lacking in early and accurate diagnosis [4].The introduction of nanoparticles in the field of cancer research has recently improved diagnosis, targeting and %U http://www.jnanobiotechnology.com/content/5/1/1