%0 Journal Article %T Alignment of angular velocity sensors for a vestibular prosthesis %A Jack DiGiovanna %A Jacopo Carpaneto %A Silvestro Micera %A Daniel M Merfeld %J Journal of NeuroEngineering and Rehabilitation %D 2012 %I BioMed Central %R 10.1186/1743-0003-9-14 %X Imagine waking up one morning, opening your eyes, and seeing your bedroom rotated 90 degrees. Suddenly, instead of the ceiling appearing above you, it is to your right. Would you be able to function? Could you adapt to such a sensory misalignment? In the long-term, the answer is yes. The brain is capable of resolving misalignment between normal and received sensory information through the mechanism of neural plasticity. Gonshor and Mevill Jones showed one dramatic example of such plasticity in their work using prism glasses [1]. These glasses inverted subjects' view of the world (e.g. right is left), but over days subjects adjusted their vestibulo-ocular (VOR) reflexes; by 18 days the VOR had reversed to match visual information. However, such plasticity is neither immediate nor free. Subjects in preliminary trials reported "rapid and severe nausea" [1] and VOR following adaptation to vision reversal never fully mimicked normal responses.Vestibular prosthetics transmit sensory information to the brain, but they also can induce sensory misalignment. These prosthetics should (partially) replace vestibular organs, which sense gravity, linear acceleration, and angular acceleration (rotation) of the head. Normally, information from these organs is transmitted to the brain where it is fused with visual and other sensory inputs to yield spatial orientation and on-going movements of the body [2,3]. Vestibular prosthetics aim to address some symptoms of vestibular dysfunction including: spatial disorientation, postural instability, self-motion perception deficits, visual blurring during head motion ("oscillopsia") due to loss of VOR, and chronic disequilibrium. However, there can be misalignment between the information transmitted by the prosthetic and information formerly provided by the damaged sensory organs. Two existing approaches solve this problem: 1) align the prosthetic sensors to the user's anatomy during the implantation surgery; 2) allow brain plasticity to corre %K Vestibular prosthetics %K sensor alignment %K neuro-prosthetics %U http://www.jneuroengrehab.com/content/9/1/14