%0 Journal Article %T Electrophoresis in nanochannels: brief review and speculation %A Fabio Baldessari %A Juan G Santiago %J Journal of Nanobiotechnology %D 2006 %I BioMed Central %R 10.1186/1477-3155-4-12 %X Recent advances in nano-scale fabrication techniques allow for novel experimentation of the role of fluidic systems in analysis, detection, and separation of chemical and biological agents [1-9]. Electric fields can be used to drive flow, move analytes, and separate ionic species in nanometer sized channels. Insightful theoretical and numerical explorations of the physics of electrokinetically-driven flows inside channels with dimensions comparable to the electric double-layer date back more than 40 years [10-16]. Most of these have centered on the bulk/neutral liquid flow and the advective and electromigration components of current in such channels. In the last few years, experimental work has turned to a more systematic probing of the behavior of so-called surface conduction in nanochannels [2,17], and to species-dependent ion transport[3,4,18]. In this note we briefly review a few interesting recent reports in the field of electrophoresis in nanochannels, and offer some speculations as to research directions and potential opportunities for new functionality. We want to emphasize that we present a selected number of physical phenomena that are relevant to electromigration of analyte ions in long, thin nanochannels (e.g., for separation), and the discussion below is by no means all-inclusive of the research in the nanochannel and/or nanopore field. Furthermore, when we cite and describe specific results or studies we have chosen to reference only selected publications as examples rather than providing a complete listing of the relevant work that has appeared in print.Electrophoresis in nanochannels is characterized by the dominant presence of the electrical double layer (EDL) that is formed spontaneously at the interface between a solid and an electrolyte. Surface charge is shielded by counter-ions from the electrolyte. Part of these counter-ions are believed to condense on the surface (reducing the effective surface charge density), while another portion remains s %U http://www.jnanobiotechnology.com/content/4/1/12