%0 Journal Article %T Hyperbranched and hiperfunctionalized materials from dendritic chemistry Materiales hiperramificados e hiperfuncionalizados derivados de la qu¨ªmica dendr¨ªtica %A Marcelo Calder¨®n %A Miriam Strumia %J Revista Latinoamericana de Metalurgia y Materiales %D 2013 %I Universidad Sim¨®n Bol¨ªvar %X Dendritic molecules are highly ordered, regularly branched, and monodisperse macromolecules. Due to their unique and well-defined macromolecular structure they are attractive scaffolds for a variety of high-end applications and constitute a fascinating nanoscale toolkit. They are of great interest to both, nano and polymer science, as building blocks due to their unique macromolecular properties. In recent years, research in the field of dendritic chemistry has experienced an exponential development in academic and technological areas and such macromolecular structures have also been extensively explored in materials science, specifically in biomedical areas. The unique advantages offered by dendritic architectures over conventional macromolecules and polymers are the presence of multiple functional groups and their amenability to further chemical modification, extremely low molecular weight dispersity, low solution viscosity, reduced molecular entanglement, and nanoscopic size within the range of 1 to 10 nm. The objective of this review is to show the advantage of the dendritic structures, their main properties, and to reflect on their development and use in various science applications. Particular emphasis will be place on biomedical and nanomedicine applications. Therefore, key examples will be discussed to illustrate the main principles involved in dendritic chemistry, and the applications of the dendritic structures at the interfaces between chemistry, biology and biomedicine. Las mol¨¦culas dendr¨ªticas son altamente ordenadas, regularmente ramificadas y monodispersas. Debido a su estructura macromolecular ¨²nica y bien definida, ellas constituyen una atractiva plataforma hacia una gran variedad de aplicaciones; siendo adem¨¢s, una fascinante herramienta para la construcci¨®n de materiales a escala nanom¨¦trica. Por lo tanto, debido a sus destacadas propiedades macromoleculares hay un gran inter¨¦s en el uso de las mismas como unidades de construcci¨®n, tanto para la ciencia de pol¨ªmeros como para la nanociencia. En los ¨²ltimos a os la investigaci¨®n en el campo de la qu¨ªmica dendr¨ªtica ha experimentado un desarrollo exponencial, tanto en el ¨¢rea acad¨¦mica como en la tecnol¨®gica. Por lo tanto, tales estructuras macromoleculares han sido extensivamente exploradas en la ciencia de los materiales, mas espec¨ªficamente en ¨¢reas biom¨¦dicas. Las arquitecturas dendr¨ªticas ofrecen ventajas ¨²nicas con respecto a otras macromol¨¦culas y pol¨ªmeros convencionales, como son la presencia de m¨²ltiples grupos funcionales y su versatilidad para sufrir posteriores modificacio %K Synthesis %K Characterization %K Nanoparticles %K Cobalt ferrite %K Magnetic properties %K dendrimer %K hyperbranched polymer %K functional polymer %K biomedicine %K dendritic effect %U http://wwww.scielo.org.ve/scielo.php?script=sci_arttext&pid=S0255-69522013000100002