%0 Journal Article %T Characterization of a synthetic bacterial self-destruction device for programmed cell death and for recombinant proteins release %A Lorenzo Pasotti %A Susanna Zucca %A Manuel Lupotto %A Maria Cusella De Angelis %A Paolo Magni %J Journal of Biological Engineering %D 2011 %I BioMed Central %R 10.1186/1754-1611-5-8 %X Here, a BioBrick£¿ lysis device present in the Registry of Standard Biological Parts has been quantitatively characterized. Its activity has been measured in E. coli by assembling the device under the control of a well characterized N-3-oxohexanoyl-L-homoserine lactone (HSL) -inducible promoter and the transfer function, lysis dynamics, protein release capability and genotypic and phenotypic stability of the device have been evaluated. Finally, its modularity was tested by assembling the device to a different inducible promoter, which can be triggered by heat induction.The studied device is suitable for recombinant protein release as 96% of the total amount of the intracellular proteins was successfully released into the medium. Furthermore, it has been shown that the device can be assembled to different input devices to trigger cell lysis in response to a user-defined signal. For this reason, this lysis device can be a useful tool for the rational design and construction of complex synthetic biological systems composed by biological parts with known and well characterized function. Conversely, the onset of mutants makes this device unsuitable for the programmed cell death of a bacterial population.Naturally occurring lytic and temperate bacteriophages have the ability to provoke the host cell lysis through the expression of specific proteins during the lytic cycle. In many phages, like the T4 phage and the lambda phage, these proteins have been identified and widely studied [1-4]. In particular, holins form stable and non-specific lesions in the cytoplasmic membrane that allow the lysozymes to gain access to the peptidoglycan layer. Lysozymes are generally soluble proteins with one or more muralytic activities against the three different types of covalent bonds (glycosidic, amide, and peptide) of the peptidoglycan polymer of the cell wall [5,6]. The combined work of holin and lysozyme results in the degradation of the two cell membranes of gram-negative bacteria, th %U http://www.jbioleng.org/content/5/1/8