%0 Journal Article %T Biological approaches for addressing the grand challenge of providing access to clean drinking water %A Mark R Riley %A Charles P Gerba %A Menachem Elimelech %J Journal of Biological Engineering %D 2011 %I BioMed Central %R 10.1186/1754-1611-5-2 %X Water scarcity is a fact of life in arid and semi-arid regions where agricultural, domestic and industrial demands compete for limited resources. Access to clean drinking water presents a monumental challenge that is well documented for the developing world but is a rising problem for more established regions [1]. The problems for both locations are often presented in simplified form as being either a lack of water quantity or a lack of water quality; however, the reality is infrequently so straight-forward. The NAE Grand Challenge document http://www.engineeringchallenges.org/cms/8996/9142.aspx webcite states:"Lack of clean water is responsible for more deaths in the world than war. About 1 out of every 6 people living today do not have adequate access to water, and more than double that number lack basic sanitation, for which water is needed. In some countries, half the population does not have access to safe drinking water, and hence, is afflicted with poor health. By some estimates, each day nearly 5,000 children worldwide die from diarrhea-related diseases, a toll that would drop dramatically if sufficient water for sanitation was available."In the so-called developed world, an aging infrastructure plays a large role in problems of providing clean drinking water. Along much of the U.S. east coast, conveyance systems (pipes, pumps, valves, etc.) were designed for a 100-year life span, but were constructed in the middle 1800's. Much of the water infrastructure is of poor quality, which has led to substantial leakage of water and unaccounted-for water totaling one half of that initially introduced. In many cases drinking water pipes are located in close proximity to black water (wastewater) pipes. In a highly connected piping network, pressure can at times be either positive or negative relative to the surrounding water table. In a leaky system, drinking water can mix with a variety of water sources, thus providing one common route for introduction of microbial co %U http://www.jbioleng.org/content/5/1/2