%0 Journal Article %T Intraperitoneal Alpha-Lipoic Acid to prevent neural damage after crush injury to the rat sciatic nerve %A Mehmet Senoglu %A Vedat Nacitarhan %A Ergul Kurutas %A Nimet Senoglu %A Idris Altun %A Yalcin Atli %A Davut Ozbag %J Journal of Brachial Plexus and Peripheral Nerve Injury %D 2009 %I Thieme Medical Publishers %R 10.1186/1749-7221-4-22 %X Forty rats were randomized into four groups. Group I and Group II received saline (2 ml, intraperitoneally) and a-LA (100 mg/kg, 2 ml, intraperitoneally) in the groups III and IV at the 24 and 1 hour prior to the crush injury. In groups II, III and IV, the left sciatic nerve was exposed and compressed for 60 seconds with a jeweler's forceps. In Group I (n = 10), the sciatic nerve was explored but not crushed. In all groups of rats, superoxide dismutase (SOD) and catalase (CAT) activities, as well as malondialdehyde (MDA) levels were measured in samples of sciatic nerve tissue.Compared to Group I, Group II had significantly decreased tissue SOD and CAT activities and elevated MDA levels indicating crush injury (p < 0.05). In the a-LA treatment groups (groups III and IV), tissue CAT and SOD activities were significantly increased and MDA levels significantly decreased at the first hour (p < 0.05) and on the 3rd day (p < 0.05). There was no significant difference between a-LA treatment groups (p > 0.05).A-LA administered before crush injury of the sciatic nerve showed significant protective effects against crush injury by decreasing the oxidative stress. A-LA should be considered in the treatment of peripheral nerve injuries, but further studies are needed to explain the mechanism of its neuroprotective effects.The rat sciatic nerve is a well-established preparation for studying peripheral nerve injuries. Focal crush injury causes axonal interruption but preserves the connective sheaths (axonotmesis). As regards this type of injury, nerve regeneration is usually successful [1].The increased formation of reactive oxygen species (ROS) and decreased antioxidant defense is defined as oxidative stress, which is widely recognized as an important feature of many diseases. Superoxide dismutase (SOD), and catalase (CAT) are cellular antioxidants, which protect cells from oxidative stress. Lipid peroxidation (LPO) is one of the most important expressions of oxidative stress indu %U http://www.jbppni.com/content/4/1/22