%0 Journal Article %T Applying Artificial Neural Networks for Face Recognition %A Thai Hoang Le %J Advances in Artificial Neural Systems %D 2011 %I Hindawi Publishing Corporation %R 10.1155/2011/673016 %X This paper introduces some novel models for all steps of a face recognition system. In the step of face detection, we propose a hybrid model combining AdaBoost and Artificial Neural Network (ABANN) to solve the process efficiently. In the next step, labeled faces detected by ABANN will be aligned by Active Shape Model and Multi Layer Perceptron. In this alignment step, we propose a new 2D local texture model based on Multi Layer Perceptron. The classifier of the model significantly improves the accuracy and the robustness of local searching on faces with expression variation and ambiguous contours. In the feature extraction step, we describe a methodology for improving the efficiency by the association of two methods: geometric feature based method and Independent Component Analysis method. In the face matching step, we apply a model combining many Neural Networks for matching geometric features of human face. The model links many Neural Networks together, so we call it Multi Artificial Neural Network. MIT + CMU database is used for evaluating our proposed methods for face detection and alignment. Finally, the experimental results of all steps on CallTech database show the feasibility of our proposed model. 1. Introduction Face recognition is a visual pattern recognition problem. In detail, a face recognition system with the input of an arbitrary image will search in database to output people¡¯s identification in the input image. A face recognition system generally consists of four modules as depicted in Figure 1: detection, alignment, feature extraction, and matching, where localization and normalization (face detection and alignment) are processing steps before face recognition (facial feature extraction and matching) is performed [1]. Figure 1: Structure of a face recognition system. Face detection segments the face areas from the background. In the case of video, the detected faces may need to be tracked using a face tracking component. Face alignment aims at achieving more accurate localization and at normalizing faces thereby, whereas face detection provides coarse estimates of the location and scale of each detected face. Facial components, such as eyes, nose, and mouth and facial outline, are located; based on the location points, the input face image is normalized with respect to geometrical properties, such as size and pose, using geometrical transforms or morphing. The face is usually further normalized with respect to photometrical properties such illumination and gray scale. After a face is normalized geometrically and photometrically, %U http://www.hindawi.com/journals/aans/2011/673016/